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ABSTRACT: The Biopharmaceutics Classification System (BCS)
has facilitated biowaivers and played a significant role in enhancing
drug regulation and development efficiency. However, the
productivity of measuring the key discriminative properties of
BCS, solubility and permeability, still requires improvement,
limiting high-throughput applications of BCS, which is essential
for evaluating drug candidate developability and guiding for-
mulation decisions in the early stages of drug development. In
recent years, advancements in machine learning (ML) and
molecular characterization have revealed the potential of
quantitative structure−performance relationships (QSPR) for
rapid and accurate in silico BCS classification. The present study
aims to develop a web platform for high-throughput BCS
classification based on high-performance ML models. Initially, four data sets of BCS-related molecular properties: log S, log P,
log D, and log Papp were curated. Subsequently, 6 ML algorithms or deep learning frameworks were employed to construct models,
with diverse molecular representations ranging from one-dimensional molecular fingerprints, descriptors, and molecular graphs to
three-dimensional molecular spatial coordinates. By comparing different combinations of molecular representations and learning
algorithms, LightGBM exhibited excellent performance in solubility prediction, with an R2 of 0.84; AttentiveFP outperformed others
in permeability prediction, with R2 values of 0.96 and 0.76 for log P and log D, respectively; and XGBoost was the most accurate for
log Papp prediction, with an R2 of 0.71. When externally validated on a marketed drug BCS category data set, the best-performing
models achieved classification accuracies of over 77 and 73% for solubility and permeability, respectively. Finally, the well-trained
models were embedded into the first ML-based BCS class prediction web platform (x f), enabling pharmaceutical scientists to
quickly determine the BCS category of candidate drugs, which will aid in the high-throughput BCS assessment for candidate drugs
during the preformulation stage, thereby promoting reduced risk and enhanced efficiency in drug development and regulation.
KEYWORDS: BCS prediction, machine learning, artificial intelligence platform, preformulation, solubility, permeability

1. INTRODUCTION
The Biopharmaceutics Classification System (BCS), proposed
by Amidon et al.1 in 1995, was designed for oral immediate-
release (IR) solid drugs to decrease regulatory constraints and
streamline the drug development and approval processes. The
BCS classifies small molecule drugs into four classes (Figure 1)
based on solubility and intestinal permeability, the key
attributes influencing oral drug absorption.1 Over two decades
of exploration have underscored the profound influence of the
BCS on the regulation and development of IR oral solid drug
products. In particular, the BCS framework has paved the way
for minimizing the necessity of clinical bioequivalence (BE)
studies in humans. The validity and broad applicability of the
BCS in the context of biowaivers have been corroborated
through extensive research and practical applications.2,3

Therefrom, major drug regulatory agencies like the European
Medicines Agency (EMA) and the U.S. Food and Drug
Administration (FDA) have embraced this scientific theory,
adopting it as a guideline for bioequivalence waivers.4 This has
expedited the market entry of generic drugs, improving cost-
efficiency. Such advancements are particularly crucial for
medications treating diseases with significant societal impacts,
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such as oncology drug products, where traditional BE tests
pose challenges.5

Despite BCS’s success in drug development and regulation,
several challenges limit its application. One major issue is the
complex and costly methods for determining solubility and
permeability, which impede rapid high-throughput screening
and the early stage developability assessment of drug
candidates. Generally, the BCS defines high and low
solubilities based on aqueous solubility over a pH range of
1.2−6.8 at 37 °C and the highest dosage strength; however,
synthesizing enough compounds for solubility measurement
can be expensive and inefficient, especially for large-scale
screening or computer-aided drug design (CADD). Compared
with solubility, permeability estimation is even more
complicated. Although various quantitative measures of
permeability exist, their accuracy remain uncertain.6 Absolute
bioavailability or mass balance studies, along with other human
pharmacokinetic studies, are considered the preferred methods
for assessing drug permeability.7 Human effective permeability
(Peff) across the jejunum membrane is also regarded as one of
the most reliable methods.8 However, these approaches come
with high execution costs, ethical concerns, and low
throughput and are unsuitable for routine use in drug
development. Alternative methods, such as in vitro perme-
ability (log Papp) in Caco-2 cell cultures and lipophilicity-based
approaches (log P and log D), are also commonly used but face
challenges relating to measurement accuracy and their ability
to reflect true permeability. Consequently, even after 30 years,
the number of drugs with well-defined BCS classifications
remains limited,9 hindering the BCS from fully realizing its
potential in advancing drug development.

Machine learning (ML) techniques have shown great
promise in predicting properties by fitting high-dimensional
nonlinear spaces using large data sets.10,11 Recent advance-
ments in property prediction,12 preformulation studies,13 and
drug formulation development14−16 highlight the potential of
ML-based Quantitative Structure−Property Relationship
(QSPR) studies for high-throughput and accurate BCS
classification. Ideally, direct prediction of the BCS four classes
would be the goal. However, the unavailability of high-quality
data sets, due to factors such as data heterogeneity,
inconsistency in experimental measurements, and limited
access to proprietary data, has led to most studies focusing
on the prediction of key properties as an indirect approach for
estimating provisional BCS classification. Table 1 summarizes
recent advancements in drug BCS prediction, with most
employing classification algorithms based on in-house cutoff
values for solubility and permeability classification. For these
classification processes, data sets (e.g., log Papp and log P) are
preclassified using cutoff values, with subsequent model
training and testing based on manual-labeled data. Such
approach raises two concerns: inappropriate cutoff values can
lead to inaccurate data labels, causing significant model bias,
and binary classification (high/low) limits the information
available for decision-making. A recent study proposed a
regression random forest model for permeability classifica-
tion,17 but it was limited to permeability classification, and the
number of external validation sets used to assess the actual
performance on BCS classification was highly limited, which
potentially affects the models’ credibility. Thus, further
improvement in ML-driven BCS classification is required.
Furthermore, most ML applications for BCS classification rely
on traditional ML approaches, and both training and testing
data sets are small. This, to a certain extent, restricts the
potential for developing more refined predictive models,
underscoring the necessity for integrating more comprehensive
data sets and adopting advanced methodologies in forthcoming
research endeavors.18

In recent years, advanced ML algorithms have made
significant strides. Algorithms like LightGBM and XGBoost
have demonstrated impressive results in QSPR studies,19,20

while Graph Neural Networks have achieved state-of-the-art
performance in many molecular property prediction
tasks.19,21,22 Another key factor contributing to the success of
these ML algorithms is the development of efficient molecular
representation methods. These methods effectively encode
chemical structures into numerical formats suitable for ML
processing. Molecular representations such as molecular

Figure 1. Biopharmaceutical classification system.

Table 1. Comparison of the Present and Previous Studies on Machine Learning-Based BCS Classification

year data set method task extra test set

201518 log S: 750 decision tree classification 127 drugs
log Papp: 1288

20136 322 oral drugs linear discriminant analysis; logistic regression; quadratic discriminant analysis classification 57 drugs
20188 43 oral drugs with log S and

Peff

a majority voting system classification 186 drugs

202217 log Papp: 4462 regression random forest regression 22 drugs
this work log S: 14,594 XGBoost; LightGBM; Graph Convolutional Networks; Attentive FP; SchNet;

ComENet
regression 43 + 294 drugsa

log P: 14,176
log D: 4101
log Papp: 1896

a43 drugs for permeability validation, 294 drugs for BCS category validation.
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fingerprints, graph-based representations, and molecular
conformation have been employed in recent studies,23 enabling
the extraction of relevant information from chemical structures
crucial for accurate property prediction and BCS classification.
The increasing size and quality of data sets also play a vital role
in advancing ML applications for drug property prediction.
The growing interest in ML has driven continuous improve-
ment and expansion of BCS-related data sets. Large-scale, high-
quality data sets are crucial for training more robust and
generalizable models, which can ultimately lead to more
reliable BCS classification predictions. Moreover, the develop-
ment of user-friendly platforms and software tools for ML-
based drug property prediction has made advanced techniques
more accessible to researchers in drug development.12−14

These platforms allow researchers to apply state-of-the-art
algorithms to their specific problems without requiring
extensive expertise in ML or programming, which facilitates
the broader adoption of advanced ML applications in drug
development.

To leverage advances in machine learning for BCS
classification, we aimed to create a user-friendly, ML-driven
web platform for rapid, high-performance BCS class prediction.
To achieve this, we first collected substantial data sets on four
BCS-related molecular properties: log S, log P, log D, and log
Papp. Using these data sets, we developed six machine learning
regression models with three different molecular representa-
tions to accurately predict each BCS-related property. After
that, the best-performing models are used to perform BCS
classifications on a data set of marketed oral drugs and human
jejunal permeability data to further verify model performance.
Lastly, a user-friendly web platform named FormulationBCS
was constructed to realize rapid, precise, and end-to-end BCS
prediction by simply inputting the structure of query
molecules, which aids in the high-throughput assessment of
drug candidates at the preformulation stage and shows the
potential to streamline the drug approval process.

2. METHODS
2.1. Data Sets. Four data sets, including log S, log D, log P,

and log Papp, were collected from various data sources, as
summarized in Table 2. For the aqueous solubility data set,

14,594 molecules annotated with experimentally derived log S
value were collected from the Aquasol data set24 and data set
made available by Cui et al.25 A total of 14,176 molecules with
log P value were provided by OpenChem,26 mainly derived
from PHYSPROP.27 The log D data set (4200 molecules) was
from MoleculeNet.28 Regarding the log Papp data set, 1896
molecules with a corresponding experimental value of Caco-2
permeability were collected from the literature,29 which is
primarily derived from the data set made available by Wang et
al.,30 the most commonly used data set for Caco-2 permeability
prediction.

Data quality is a fundamental issue in machine learning,
which can significantly affect the model performance of QSPR
tasks. To improve the quality and reliability of data, the process
of data cleaning follows four steps:

1. Delete molecules that do not have labels or a simplified
molecular input line entry system (SMILES).

2. Canonical SMILES generated with RDKit31 was used to
identify duplicate entries. After this, if the labels of
duplicate entries were not significant different, we took
their arithmetic mean as the final label; otherwise, we
remove these duplicate items.

3. If a molecule does not contain any carbon atoms, it
would be identified as inorganic and be removed.

4. Molecules for which corresponding molecule represen-
tation could not be successfully created were removed.

2.2. Molecular Featurization. To effectively predict BCS-
related properties using machine learning models, it is crucial
to ensure that the models comprehensively learn molecular
structures. In ML-based QSPR tasks, molecular representations
typically stem from three main dimensions: molecule finger-
prints and descriptors, molecular graphs, and 3D-atomic
coordinates. In this study, we generated these three molecular
representations from the molecular structure to serve as inputs
for our models.

For molecule fingerprint, Extended-Connectivity Finger-
prints (ECFPs) were employed to delineate the structural
details of compounds.32 ECFPs, a prevalent type of molecular
fingerprint in computational chemistry, utilize circular
substructures of varying sizes to represent specific groups of
atoms within a molecule. These substructures are then hashed
into a fixed-length numerical vector comprising 0s and 1s.
Molecular descriptors succinctly summarize the structural
characteristics of a molecule as well as the physicochemical and
electronic features derived or calculated from the structure.
They serve as a vital link between a molecule’s structure and its
biological activity or other properties, holding a pivotal role in
QSPR studies. Incorporating these descriptors into fingerprint
representations has been proven to significantly bolster model
robustness and enhance performance, as evidenced by
numerous studies in computational chemistry.19,33 In this
study, both ECFPs and molecular descriptors were generated
using RDKit,31 with the ECFPs characterized by a length and
radius of 1024 and 3, respectively.

Molecule graphs are another paradigm of molecular
representation. In a graph-based molecular representation,
nodes in the graph represent the atoms within the molecule,
while the edges represent the chemical bonds connecting these
atoms. Node vectors encapsulate various atomic attributes,
while edge vectors encompass diverse bond features.34

Following Xiong’s work,22 we incorporated a comprehensive
set of features for both nodes and edges, including nine node
features (such as the atom type, atom degree, formal charge,
etc.) and four edge features (bond type, conjugation, ring, and
stereo). These features were generated by the “AttentiveFPA-
tomFeaturizer” and “AttentiveFPBondFeaturizer” functions
from DGL-LifeSci,35 a deep graph library based on Pytorch.36

Three-dimensional molecular conformation offers a more
intuitive representation, emphasizing the spatial arrangement
of atoms within a molecule. This arrangement significantly
impacts a molecule’s properties, making it crucial for fields like
drug design. In this work, we utilized RDKit to generate and
optimize molecular conformations in the MMFF force field.37

Table 2. Data Volume of the Cleaned Datasets

data
sets

data
volume source

log S 14,594 Aquasol data set,24 Cui et al.25data set
log P 14,176 OpenChem,26 PHYSPROP27

log D 4101 MoleculeNet28

log Papp 1896 Caco-2 permeability literature,29 Wang et al.30 data
set
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2.3. Machine Learning Model Development. To
maximize the information within diverse molecular representa-
tions and identify the most effective combination of
representations and ML architectures for predicting BCS-
related properties, we utilized two representative ML
algorithms (LightGBM38 and XGBoost39) to build the
fingerprint and descriptors-based models. Two representative
graph-based methods (GCN21 and Attentive FP22) were used
to develop a graph-based model. For capturing molecular
conformation information, we applied two representative
conformation-based methods (SchNet40,41 and ComENet42)
to develop molecular conformation-based models.
2.3.1. XGBoost (Extreme Gradient Boosting). XGBoost39

(Extreme Gradient Boosting) is an advanced and scalable
machine learning framework designed by Tianqi Chen for
enhancing decision trees through gradient boosting. This
library leverages ensemble learning by integrating multiple
simple models to create a more robust and precise model.
Central to XGBoost is decision trees that serve as base
learners, with the boosting technique fine-tuning their weights
to reduce errors. Key features of XGBoost include its parallel
processing capabilities for efficiency with large data sets,
comprehensive regularization options to prevent overfitting,
and its flexibility and interpretability that aid in optimal
hyperparameter tuning and understanding feature significance.
2.3.2. Highly Efficient Gradient Boosting Decision Tree

(LightGBM). LightGBM,38 another gradient boosting frame-
work based on decision trees, is widely recognized for its
efficiency, speed, and scalability in machine learning tasks such
as regression and classification. It distinguishes itself through
multiple algorithmic optimizations: (1) employing histogram-
based binning to minimize data processing and accelerate
training; (2) implementing a unique leaf-wise growth strategy
with depth restrictions that allows for more precise predictions
while mitigating overfitting; and (3) the tree construction in
LightGBM selectively includes data points using gradient-
based one-side sampling, which improves model accuracy and
reduces bias. LightGBM has gained significant attention and
optimal performance in property prediction and drug
formulation prediction tasks.20

2.3.3. Graph Convolutional Networks (GCN). As of now,
various Graph Convolutional Network (GCN) frameworks
and variants have been proposed, with the most classical GCN
model introduced by Kipf and Welling in their 2017 paper.21

The structure of the GCN model is founded on graph
convolutions, where each node in the graph is updated through
a weighted linear combination of its neighbors’ representa-
tions. Specifically, the graph convolutions are defined by eq 1:

H D AD H W( )l l l( 1) 1/2 1/2 ( ) ( )=+ (1)

where H(l) is the node representation in layer 1; D and A are
the degree matrix and adjacency matrix, respectively; W(l) is
the weight matrix in layer l; and σ is the activation function. A
distinguishing feature of GCN is its capability to handle graph-
structured data, an area where traditional neural network
architectures might falter. The primary objective of GCN is to
execute node-level prediction tasks, including node classi-
fication, link prediction, and clustering on graph-structured
data. Its applications span various domains, such as social
network analysis, recommendation systems, and bioinfor-
matics.

2.3.4. Attentive FP. Developed by Xiong et al.,22 Attentive
FP represents a cutting-edge Graph Neural Network (GNN)
approach for predicting molecular properties. This model
utilizes a recursive neural network (RNN) to progressively
gather and update structural information encoded in a
molecular graph, moving from local to distant interactions. A
distinctive feature of Attentive FP is its incorporation of a
graph attention mechanism, which enables the model to
selectively concentrate on the most pertinent aspects of the
input for an enhanced prediction accuracy. Xiong’s research
highlights Attentive FP’s superior performance across a wide
range of molecular properties.
2.3.5. SchNet. SchNet is a deep neural network architecture

for molecular property prediction, introduced in 2017 by Klaus
Schütt.40,41 The architecture takes as input a set of 3D
coordinates for the atoms in a molecule and predicts various
molecular properties such as energies, forces, and dipole
moments. The structure of SchNet is based on continuous-
filter convolutions, which allow it to capture long-range
interactions between atoms in a molecule. A key feature of
SchNet is its ability to learn the molecular interactions directly
from the input coordinates without relying on hand-engineered
molecular features. The goal of SchNet is to achieve high
accuracy and efficiency in molecular property prediction,
making it a useful tool for numerous applications, particularly
in fields such as computational chemistry and materials
science.
2.3.6. ComENet. ComENet, proposed by Wang et al.,42 is

also a cutting-edge graph neural network designed for 3D
molecular graph learning. In ComENet, a 3D graph:

G V A P( , , )= (2)

where V is the Node feature matrix, A is the adjacency matrix,
and P is the position matrix. The authors proposed a novel
message passing scheme for the complete and efficient
processing of 3D information, focusing on both global and
local graph details. Notably efficient in computational terms,
ComENet excels in handling large data sets and demonstrates
superior accuracy in molecular property predictions.

2.4. Model Training, Optimization, and Evaluation.
For each task, the original data set was divided into three parts:
training (80%), validation (10%), and testing subsets (10%),
utilizing random stratified splitting techniques. The training
subset was used for model training, while the validation subset
played a crucial role in tuning the hyperparameters to achieve
the optimal configuration. After tuning, the training and
validation subsets were combined, and the models were
evaluated using a 5-fold cross-validation method on the
combined data set to assess their stability and robustness.
Finally, the testing subset was employed to assess the final
generalization capability of the model. This approach,
encompassing model training, validation, and testing, is a
widely recognized standard practice in ML. The Tree-
structured Parzen Estimator (TPE) algorithm,43 implemented
using the hyperopt library,44 was utilized to identify the
optimal hyperparameters for ML models through 50
evaluations (with 30 evaluations for predictions on log S and
log P by the SchNet and ComENet models due to their high
computing overhead). Hyperopt is renowned as one of the
most used Bayesian optimizers, encompassing a range of
optimization algorithms, such as random search and the TPE
approach. In comparison to Bayesian optimization methods
based on Gaussian processes, TPE, utilizing Gaussian mixture
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models, generally delivers superior results with greater
efficiency across most scenarios.43 This has led to its
widespread adoption in Automated Machine Learning
(AutoML).43 To prevent overfitting and excessive time
consumption, all Neutral Network (NN)-based models were
trained with early stopping after 50 epochs, halting training
when no improvement in the validation performance was
observed. For deep learning models, we performed additional
manual fine-tuning of their hyperparameters. This was
necessary as the hyperparameter search space of DNNs is
extensive, and direct employment of Bayesian search may lead
to underfitting or overfitting compared with other learning
algorithms. Model evaluation primarily focuses on three key
metrics: the coefficient of determination (R2), Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE).

2.5. External Validation Data. 2.5.1. BCS Category Data
of Marketed Drugs. To further validate the effectiveness of the
BCS-related discriminant models, we assembled marketed drug
BCS data from the FDA45 and WHO46 reports and publicly
available literatures3,47−49 as the external test set. The raw data
underwent deduplication, and conflicting entries on solubility
or permeability from different sources were removed. After
data cleaning, a total of 294 marketed drug data was collected
(Supporting Information), including 66 BCS class 1 drugs, 66
BCS class 2 drugs, 56 BCS class 3 drugs, 18 BCS class 4 drugs,
36 BCS class 1/3 drugs (high solubility), 36 BCS class 2/4
drugs (low solubility), 12 BCS class 1/2 drugs (high
permeability), and 4 BCS class 3/4 drugs (low permeability),
as shown in Figure 2.

2.5.2. Human Jejunal Permeability Data. Given that
permeability values obtained from in vivo human studies are
the most reliable and realistic data for drug permeability
validation, we employed the data on 43 compounds with
known human jejunal permeability values8 to further validate
our permeability models.

2.6. Web Platform Construction. To meet the industry’s
demand for a high-efficiency, stable, and scalable platform, we
developed an online, agile, and expandable platform for
streamlined BCS classification. The system is built on Alibaba
Cloud’s Elastic Compute Service (ECS) for essential hardware
infrastructure, with Ubuntu as the server’s operating system.
We utilized uWSGI and Nginx for efficient and secure web
request management, load balancing, and enhanced security.
Python was chosen as the primary programming language due
to its popularity and robust ecosystem, including AI and data
processing packages such as Numpy, Pandas, Scikit-learn, and
PyTorch. We employed Django as the framework to ensure a
clear separation of business data (Model), user interfaces

(Template), and business logic (View), facilitating easier
upgrades and maintenance. MySQL was used for data storage
due to its reliability as a relational database engine. For the
front-end, we used CSS and JavaScript to create a cross-
platform user interface and AJAX to connect the front-end
with the back-end. We implemented the Transport Layer
Security (TLS) protocol for data transmission. This
comprehensive architecture enabled our BCS prediction
platform to efficiently store and format evaluated models,
providing users with reliable BCS classification prediction
services.

3. RESULTS AND DISCUSSIONS
3.1. Model Performance. Table 3 shows the performance

of six machine learning methods (XGBoost, lightGBM,
AttentiveFP, GCN, SchNet, and ComENet) for four tasks
(log S, log D, log P, and log Papp). Table 4 presents the
performance and standard deviations from the 5-fold cross
validation of six machine learning methods across four tasks.
The cross-validation results indicate that the models exhibit
stable performance across both the training and validation sets,
with small standard deviations showing that model perform-
ance is not significantly affected by specific data splits. Figure 3
shows the scatterplot of the optimal model for each task. For
solubility prediction, the R2 values were around 0.8 across the
models. SchNet had the lowest accuracy at 0.74, while
LightGBM had the highest at 0.84. This trend was consistent
for both RMSE and MAE, with SchNet recording the lowest
accuracies of 1.12 and 0.76, respectively, and LightGBM
achieving the highest accuracies of 0.88 and 0.59. Among the
four models based on raw molecular structure information (2D
graph and 3D conformation), the AttentiveFP model showed
superior performance, nearing the accuracy of the descriptor-
based model. This indicates that AttentiveFP effectively
captures molecular feature information using only a limited
set of atomic and bond properties. For permeability related
tasks, two graph-based methods and two fingerprint and
descriptors-based methods achieve comparable performances
with the RMSE of 0.40 for the test set in log P prediction. For
log D prediction, AttentiveFP outperformed others, achieving
the lowest RMSE of 0.60 in the test set, while GCN had a
slightly higher RMSE of 0.62. The performances of two
descriptors-based methods and two conformation-based
methods are obviously unpleasant on this data set. Regarding
log Papp prediction, XGBoost performs best with the RMSE
and R2 of 0.42 and 0.71 for the test set, respectively, slightly
surpassing the results of LightGBM, GCN, and AttentiveFP.
The quality of the data set directly determines the upper limit
of the model’s predictive performance. It has been reported
that the standard deviation of experimental solubility values for
the same compound can be as high as 0.5 in logS units.24 The
experimental error in measuring log P ranges from 0.2 to 0.4
log units,50 while for log D, this value falls between 0.11 and
0.27.51 The experimental error for log Papp measurements is
between 0.3 and 0.7 log units.52 Experimental errors constitute
the main source of data errors. In future work, improving the
methods for determining BCS properties and reducing
experimental errors will benefit the models.

Overall, as shown in Table 3, LightGBM, XGBoost, and
Attentive FP generally perform better than the other models,
while graph methods based on 3D coordinates perform worst
on all tasks. This is contrary to common sense, as the 3D
structure of molecules is crucial for their properties and drug

Figure 2. BCS category distribution among the collected marketed
drug data set.
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actions.53 Similar phenomenon is also noted in several
studies,54,55 which can be attributed to three factors. First,
computation constraints limit the hyperparameter optimization

for these models. Second, graph networks based on 3D
coordinates are designed for quantum interactions and need
large data sets with quantum mechanics characteristics,

Table 3. Model Performance on the Training Set, Validation Set, and Test Set for Four Tasks

training set validation set test set

property model RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

log S LightGBM 0.49 0.35 0.95 0.88 0.61 0.84 0.88 0.59 0.84
XGBoost 0.32 0.23 0.98 0.88 0.60 0.84 0.89 0.60 0.84
GCN 0.75 0.55 0.88 0.92 0.65 0.82 0.98 0.66 0.81
AttenFP 0.82 0.58 0.86 0.90 0.64 0.83 0.89 0.62 0.84
SchNet 0.64 0.46 0.91 0.95 0.70 0.80 1.16 0.80 0.74
ComENet 0.66 0.47 0.90 0.90 0.66 0.81 1.12 0.76 0.76

log P LightGBM 0.23 0.16 0.98 0.43 0.29 0.94 0.42 0.30 0.95
XGBoost 0.15 0.10 0.99 0.43 0.30 0.94 0.42 0.30 0.95
GCN 0.21 0.15 0.98 0.37 0.26 0.96 0.39 0.27 0.95
AttenFP 0.24 0.17 0.98 0.34 0.24 0.96 0.36 0.25 0.96
SchNet 0.39 0.30 0.95 0.51 0.35 0.92 0.55 0.39 0.91
ComENet 0.31 0.24 0.96 0.44 0.27 0.94 0.48 0.32 0.94

log D LightGBM 0.18 0.16 0.97 0.67 0.50 0.66 0.71 0.54 0.66
XGBoost 0.27 0.21 0.95 0.71 0.55 0.62 0.72 0.56 0.65
GCN 0.32 0.24 0.93 0.56 0.42 0.76 0.62 0.47 0.73
AttenFP 0.32 0.24 0.93 0.55 0.40 0.78 0.60 0.43 0.76
SchNet 0.57 0.43 0.77 0.61 0.48 0.72 0.71 0.54 0.66
ComENet 0.45 0.36 0.82 0.58 0.45 0.74 0.63 0.47 0.72

log Papp LightGBM 0.15 0.12 0.96 0.38 0.30 0.74 0.42 0.33 0.70
XGBoost 0.17 0.13 0.95 0.40 0.31 0.72 0.42 0.33 0.71
GCN 0.31 0.24 0.84 0.42 0.33 0.69 0.42 0.34 0.70
AttenFP 0.30 0.23 0.85 0.39 0.30 0.73 0.43 0.33 0.69
SchNet 0.40 0.33 0.75 0.42 0.34 0.69 0.48 0.38 0.64
ComENet 0.37 0.29 0.78 0.41 0.32 0.71 0.45 0.35 0.68

Table 4. Five-Folds Cross-Validation Results for Four Tasks

training set in 5-folds validation set in 5-folds

property model RMSE MAE R2 RMSE MAE R2

log S LightGBM 0.475(0.004)a 0.339(0.003) 0.953(0.001) 0.920(0.040) 0.624(0.019) 0.824(0.015)
XGBoost 0.442(0.004) 0.323(0.003) 0.960(0.002) 0.895(0.045) 0.623(0.024) 0.828(0.020)
GCN 0.685(0.020) 0.487(0.021) 0.904(0.009) 0.973(0.027) 0.646(0.012) 0.804(0.014)
AttenFP 0.714(0.023) 0.507(0.026) 0.894(0.012) 0.953(0.023) 0.640(0.011) 0.811(0.010)
SchNet 0.629(0.032) 0.434(0.036) 0.925(0.021) 1.021(0.072) 0.684(0.047) 0.781(0.035)
ComENet 0.667(0.032) 0.465(0.035) 0.912(0.018) 0.989(0.056) 0.654(0.038) 0.801(0.029)

log P LightGBM 0.221(0.002) 0.154(0.001) 0.985(0.001) 0.464(0.013) 0.311(0.003) 0.935(0.004)
XGBoost 0.134(0.002) 0.088(0.001) 0.994(0.001) 0.461(0.016) 0.305(0.006) 0.936(0.004)
GCN 0.236(0.017) 0.162(0.012) 0.982(0.003) 0.422(0.011) 0.264(0.005) 0.948(0.003)
AttenFP 0.224(0.013) 0.155(0.009) 0.985(0.002) 0.396(0.007) 0.252(0.003) 0.953(0.002)
SchNet 0.415(0.025) 0.331(0.021) 0.946(0.012) 0.527(0.029) 0.385(0.012) 0.915(0.008)
ComENet 0.305(0.025) 0.236(0.018) 0.963(0.011) 0.491(0.025) 0.366(0.010) 0.921(0.008)

log D LightGBM 0.303(0.003) 0.228(0.003) 0.936(0.001) 0.654(0.030) 0.491(0.026) 0.700(0.024)
XGBoost 0.313(0.001) 0.234(0.002) 0.931(0.001) 0.654(0.026) 0.487(0.021) 0.700(0.019)
GCN 0.348(0.039) 0.267(0.027) 0.910(0.017) 0.575(0.020) 0.416(0.016) 0.761(0.018)
AttenFP 0.296(0.037) 0.223(0.027) 0.937(0.016) 0.552(0.016) 0.396(0.013) 0.786(0.016)
SchNet 0.583(0.048) 0.426(0.035) 0.782(0.020) 0.626(0.032) 0.461(0.026) 0.715(0.025)
ComENet 0.518(0.035) 0.389(0.026) 0.810(0.016) 0.605(0.023) 0.444(0.015) 0.738(0.018)

log Papp LightGBM 0.156(0.002) 0.121(0.002) 0.960(0.002) 0.399(0.020) 0.308(0.015) 0.732(0.028)
XGBoost 0.181(0.002) 0.139(0.001) 0.945(0.001) 0.394(0.016) 0.306(0.013) 0.739(0.019)
GCN 0.351(0.026) 0.274(0.020) 0.812(0.025) 0.414(0.029) 0.325(0.022) 0.692(0.047)
AttenFP 0.314(0.022) 0.258(0.018) 0.838(0.024) 0.398(0.025) 0.306(0.018) 0.736(0.032)
SchNet 0.416(0.034) 0.314(0.028) 0.733(0.032) 0.441(0.033) 0.343(0.029) 0.668(0.047)
ComENet 0.376(0.031) 0.295(0.027) 0.763(0.029) 0.432(0.030) 0.332(0.025) 0.685(0.045)

aThe results in the table are presented in the form of “mean (standard deviation)”, and all experimental results are obtained through 5-fold cross
validation.
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resulting in poor performance on smaller data sets. These
models also ignore predefined bonding information, necessitat-
ing a large data corpus to discern atomic relationships, such as
bonded or nonbonded states.56 Third, these models require
accurate spatial information. They extend spatial data to
complex spaces, making them very sensitive to the accuracy of
three-dimensional information. However, in this work, the 3D
structures rapidly generated by RDKit in a vacuum state are
approximated and noisy, differing from the conformations of
molecules in solvents or even in physiological conditions. In
future work, it may be possible to improve model performance
by introducing solvent environments or using multiconforma-
tion sampling techniques.

Regarding lipophilicity prediction, models based on finger-
prints and descriptors perform lower for log D compared to the
other two types of models, contrasting with the overall
prediction results. This indicates that the current combination
of molecular fingerprints and descriptors lacks crucial variables
for log D. Predicting log D is more complex than log P, as it

requires understanding the molecule’s ionization state at a
given pH (typically pH 7.4 in drug development).57,58 In fact,
the pH dependent distribution coefficient, log D, is related to
log P through the ionization constant, pKa. Log D can be
derived from log P and pKa for a singly ionized substance at a
given pH with eqs 3 and 4 for acids and bases, respectively:59

D Plog log log 1 10 K
(pH)

(pH p a)= [ + ] (3)

D Plog log log 1 10 K
(pH)

(p a pH)= [ + ] (4)

This also highlights that log P is a critical parameter in
descriptor-based log D prediction. To validate this, we added
the predicted log P variable and retrained the LightGBM
model for log D prediction, resulting in a notable improvement
in model performance with an RMSE of 0.64. This result
suggests that feature engineering is necessary to achieve good
performance, especially in descriptor-based models, and further
indicates that GNN models may be more competitive when

Figure 3. Scatter plots of the best model predictions for the four tasks. The horizontal axis represents the measured values, and the vertical axis
represents the predicted values. Blue circles denote training data, green squares denote validation data, and red triangles denote test data. Upper
left: log S prediction with LightGBM, upper right: log P prediction with Attentive FP, lower left: log Papp prediction with XGBoost, lower right: log
D prediction with Attentive FP.
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there is no prior knowledge of choosing more appropriate
descriptors.

3.2. External Validation. 3.2.1. Solubility Classification
Performance. The classification of high and low solubilities for
the 278 compounds with clear solubility labels was determined
using the dose number (D0), which can be derived from the
following equation:7

D M C Vdose number ( ) /0 0 s 0= (5)

where M0 (in milligrams) is the highest single therapeutic dose
that was manually collected from the drug product labels, Cs
(in milligrams per milliliter) is the solubility value predicted
with our current optimal solubility model, and V0 is set at 250
mL.

The solubility classification results based on the calculated
D0 is shown in Table 5. D0 greater than 1 implies low

solubility, while D0 less than or equal to 1 implies high
solubility. The prediction result demonstrated excellent
consistency with the referenced BCS labels, achieving a total
accuracy of 77.7%. The performance on the external validation
set is particularly strong for low solubility drugs, with an
accuracy of around 85.8%, and satisfactory for BCS Class 1 and
3 drugs, with an accuracy of approximately 71.5%. It is notable
that determining drug solubility based on the highest single
therapeutic dose might limit the application of BCS
classification, as the dose value of drugs is typically evaluated
in the latter stages of drug development.4 To overcome this
constraint, we also used the lower limit of the solubility range
defined in the USP (0.1 mg/mL) as the cutoff value. It was
observed that using this cutoff value also yielded acceptable
results for the external test data, with an accuracy of 73%.
3.2.2. Permeability Classification Performance. Here, we

compare the external validation of permeability classification
based on the optimal models for three tasks: log P, log D, and
log Papp. The boundaries for classifying permeability were
established by setting a cutoff value based on the benchmark
provided by the internal standard drug, Metoprolol. For log P,
the boundary is generally confirmed as 1.72.60 Due to
variations in the methodology and conditions used for
estimating log D, there is no universally accepted exact value
for log D of Metoprolol at pH 7.4. In this study, we used the
predicted log D value of Metoprolol (−0.1954) with the
AttentiveFP model as the cutoff value. Regarding log Papp,
although Metoprolol reports a permeability value of log Papp
4.7 (Papp = 20 × 10^−6 cm/s), many drugs with lower Papp
values than metoprolol are often considered to be fully
absorbed. This is because Metoprolol’s Fa value (Fa ≥ 95%) is
more conservative than the standards of FDA and EMA (Fa ≥
85%).7 Based on previous studies,61,62 a Papp value of 8.0 ×
10^−6 cm/s (log Papp= −5.097) is employed as the Caco-2

permeability cutoff value, which has been used for identifying
compounds with Fa ≥ 85%.

With the corresponding cutoff values, we applied the three
optimal models to predict the permeability of 222 drugs with
permeability labels from their provisional BCS classes. The
performance of three models are depicted in Tables 6−8,

respectively, indicating that these models exhibited acceptable
performance in permeability classification, with accuracy
ranging from 71.2 to 73.4%. Among them, the log Papp
model was found to be the most informative predictor for
drug permeability, achieving the highest accuracy of 73.4%,
and both sensitivity and specificity were close to 73%, which
showcases that the log Papp prediction model possesses a
balanced ability to correctly classify drugs as low or high
permeability. Although the models of log D and log P also
showed comparable overall performance, both models exhibit
bias toward a certain label. Specifically, log P has an accuracy of
75.6% for low permeability drugs, but only 68.6% for high
permeability; log D, on the other hand, performs better in
predicting high permeability drugs with a sensitivity of 84%,
but has a specificity of less than 50%, making it ineffective in
determining low permeability drugs. The reason for this might
be that, from an ML modeling perspective, the log D model
has the largest MAE value of 0.43 compared to log P and log
Papp. When using the predicted log D value (−0.19) as the

Table 5. Confusion Matrix in Solubility Classificationa

log S
predicted high

solubility
predicted low

solubility total
accuracy

(%)

high
solubility

113 45 158 71.5

low
solubility

17 103 120 85.8

total 130 148
precision

(%)
86.9 69.6

aTotal accuracy: (113 + 103) / (113 + 45 + 17 + 103) = 77.7%.

Table 6. Permeability Classification Confusion Matrix Based
on log Pa

log P
predicted high

permeability
predicted low
permeability total

accuracy
(%)

high
permeability

99 45 144 68.8

low
permeability

19 59 78 75.6

total 118 104
precision (%) 83.9 56.7
aTotal accuracy: (99 + 59) / 222 = 71.2%.

Table 7. Permeability Classification Confusion Matrix Based
on log Da

log D
predicted high

permeability
predicted low
permeability total

accuracy
(%)

high
permeability

123 21 144 85.4

low
permeability

40 38 78 48.7

total 163 59
precision (%) 75.5 64.4
aTotal accuracy: (123 + 38) / 222 = 72.5%.

Table 8. Permeability Classification Confusion Matrix Based
on log Papp

a

log Papp

predicted high
permeability

predicted low
permeability total

accuracy
(%)

high
permeability

105 39 144 73.0

low
permeability

20 58 78 74.3

total 125 97
precision (%) 84 60
aTotal accuracy: (105 + 58) / 222 = 73.4%.
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cutoff, more than 20 out of 79 drugs labeled as low
permeability fall within the range of (−0.19 − MAE, −0.19
+ MAE), indicating high uncertainty in the classification of low
permeability drugs when the cutoff fluctuates slightly. From a
biophysical perspective, both log D and log P indicate the
passive diffusion permeability of drugs across the intestinal
wall. However, they fall short in classifying the permeability of
drugs that are actively absorbed via transporters. Carrier-
mediated absorption relies on specific drug−protein inter-
actions, which are distinct from the processes governed by
lipophilicity.

Apart from validating with marketed drugs with provisional
BCS labels, we employ the human jejunal permeability data set
to access permeability classification performance. As delineated
in Table 9, the performance varies significantly. Specifically, the
Caco-2-derived log Papp prediction model achieves a superior
predictive accuracy at 74.4% for the group of 43 compounds,
compared to 55.8 and 58.1% for the log P and log D prediction
models, respectively. However, using the log Papp model for
drug permeability prediction still has limitations. While Caco-2
monolayers can predict passive drug transport and provide
insights for carrier-mediated systems, variations in carrier
expression and differences from in vivo conditions may lead to
discrepancies,63 particularly with actively transported drugs like
L-leucine, L-dopa, and D-glucose in the human jejunal
permeability test set. Additionally, the high experimental cost
results in a smaller log Papp data set compared to lipophilicity
data sets, potentially limiting model generalizability. Therefore,
in the long run, collecting more high-quality Caco-2 data is an
essential task. Expanding and diversifying the data set will
enhance the model’s predictive performance and overall
reliability.
3.2.3. Performance of BCS Classification. Following the

solubility and permeability classification performance evalua-
tion, the BCS classification was evaluated on 206 compounds
with unique BCS labels using the LightGBM model for
solubility prediction and the XGBoost model on log Papp for
permeability determination. As observed in Table 10, more
than half of the data (54.8%) were classified correctly. About
40% of the data were partially classified correctly (either
solubility or permeability), while only eight compounds (3.9%)
were entirely misclassified. The results indicate that the
established machine learning models demonstrate a reasonable
capability for predicting the BCS classification of drugs based
on solubility and permeability.

3.3. Web Platform for BCS Classification. To reduce the
barriers to using machine learning models and expand their
application scenarios, we have deployed the optimized model
on a user-friendly web platform named FormulationBCS.
FormulationBCS is an online platform that supports end-to-
end BCS classification prediction, with an overview of its user
interface provided in Figure 4. The platform is designed to
streamline the prediction process and ensure a smooth user
experience through a clear and intuitive interface. Users simply
input the SMILES of a molecule or the name of a drug, and
FormulationBCS automatically performs subsequent calcula-
tions within seconds, outputting a wealth of information,
including BCS classification and predictions of quantitative
BCS properties such as solubility, log D, log P, and log Papp.
Additionally, key molecular properties, such as molecular
weight and polar surface area, will also be computed and
provided. All results are presented through intuitive text
formats or interactive charts, enhancing their comprehensi-

bility. FormulationBCS is freely accessible at http://
formulationbcs.wztgyh.com and requires no additional soft-

Table 9. External Validation Result for Permeability
Prediction with the Human Jejunal Permeability Dataset8

drug
BCS
class

Pred_log P
(cutoff:
1.720)

Pred_log D
(cutoff:
−0.195)

Pred_log Papp
(cutoff:
−5.097)

acetaminophen 1 0.523 0.406 −4.539
amiloride

hydrochloride
1 0.756 −0.372 −6.001

amoxicillin trihydrate 3 −0.286 −1.320 −6.340
antipyrine 1 0.588 0.156 −4.180
atenolol 3 0.315 −0.987 −5.286
benserazide 1 −2.197 −0.198 −6.586
varbamazepine 2 2.313 1.881 −4.533
vephalexin 1 0.395 −1.030 −5.870
vimetidine 3 0.627 −0.688 −5.797
vreatinine 3 −1.430 −1.288 −5.376
vyclosporine 2 2.400 3.451 −5.822
D-glucose 1 −2.977 −2.276 −6.002
desipramine 1 4.216 1.196 −4.840
enalapril maleate 1 1.040 −0.082 −5.357
enalaprilat 3 −0.912 −1.177 −6.120
fexofenadine 3 3.078 0.427 −5.190
fluvastatin 1 3.890 1.705 −5.537
furosemide 4 2.070 −0.890 −5.745
griseofulvin 2 2.254 2.130 −4.300
hydrochlorothiazide 3 −0.172 −0.008 −5.971
hydrocortisone 1 1.482 0.489 −5.030
isotretinoin 2 6.240 3.307 −4.384
inogatran 3 −0.156 −0.506 −6.120
ketoprofen 2 3.261 0.023 −4.586
L-leucine 1 −1.624 −1.095 −5.167
L-dopa 1 −2.547 −1.006 −5.820
lisinopril 3 −1.850 −1.060 −6.426
losartan 3 3.437 3.701 −5.620
methyldopa 3 −2.359 0.194 −5.500
metoprolol 1 1.821 −0.195 −4.809
naproxen 2 3.071 −0.079 −4.535
phenylalanine 1 −1.412 −1.005 −5.145
piroxicam 2 2.852 −0.242 −4.850
propranolol 1 3.152 0.827 −4.651
ranitidine 3 0.023 −0.930 −5.885
salicylic acid 1 1.523 −0.922 −4.779
sulforaphane 2 0.725 −0.619 −4.618
talinolol 3 2.898 1.597 −5.237
terbutaline 3 0.512 −0.382 −5.527
triamcinolone

acetonide
2 2.329 1.653 −4.988

urea 1 −1.781 −0.748 −4.992
valacyclovir 1 −0.662 −1.059 −5.940
verapamil

hydrochloride
1 3.868 2.907 −5.010

accuracy 55.8% 58.1% 74.4%

Table 10. Performance for BCS Class Prediction

BCS prediction
BCS class

BCS 1 BCS 2 BCS 3 BCS 4

predicted BCS class BCS 1 33 8 12 0
BCS 2 19 39 3 1
BCS 3 11 2 31 7
BCS 4 3 17 10 10
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ware or hardware installation, making it easily usable on any
device with a web browser. We believe that FormulationBCS
will become an indispensable tool in drug development, aiding
researchers in making more informed decisions during the
early stages of drug discovery.

4. CONCLUSIONS
In the present work, a high-performance machine learning-
based BCS online prediction platform (FormulationBCS) was
successfully established. After diverse molecular representa-
tions and learning algorithms were compared, descriptor-based
models (LightGBM and XGBoost) and a graph-based model
(AttentiveFP) demonstrated superior predictive performance
in predicting BCS properties. The top-performing models were
further validated using the approved drug BCS category data
set. Such optimal models were deployed on a user-friendly web
platform, enabling an automated end-to-end BCS class
prediction. FormulationBCS exhibits satisfactory predictive
performance while covering a broad chemical space, providing

pharmaceutical researchers with a valuable tool for the high-
throughput drug candidate BCS class evaluation. This will
further aid in developability assessments and drug develop-
ment decisions, contributing significantly to efficiency
improvement and risk reduction for drug development. In
future work, improvements in data scale and quality, the
development of multimodal representation methods, and the
introduction of transfer learning and multitask learning
strategies are expected to further enhance the model’s
predictive performance and generalization ability. The
FormulationBCS platform will also undergo continuous
updates based on user feedback to expand its functionality
and improve stability.
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Data Availability Statement
The data sets and models are accessible at https://github.com/
NamanWang/FormulationBCS. The FormulationBCS web

Figure 4. Snapshot of the user interface and application overview of FormulationBCS.
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com/
*sı Supporting Information
The Supporting Information is available free of charge at
ht tps ://pubs .acs .org/doi/10 .1021/acs .molpharma-
ceut.4c00946.

External validation data set: BCS category data of 294
marketed drugs (Table S1) (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Defang Ouyang − Institute of Chinese Medical Sciences
(ICMS), State Key Laboratory of Quality Research in
Chinese Medicine and Department of Public Health and
Medicinal Administration, Faculty of Health Sciences (FHS),
University of Macau, Macau 999078, China; orcid.org/
0000-0002-8052-4773; Email: defangouyang@um.edu.mo

Authors
Zheng Wu − Institute of Chinese Medical Sciences (ICMS),
State Key Laboratory of Quality Research in Chinese
Medicine, University of Macau, Macau 999078, China

Nannan Wang − Institute of Chinese Medical Sciences
(ICMS), State Key Laboratory of Quality Research in
Chinese Medicine, University of Macau, Macau 999078,
China

Zhuyifan Ye − Faculty of Applied Sciences, Macao Polytechnic
University, Macau 999078, China; orcid.org/0000-0002-
9270-0949

Huanle Xu − Faculty of Science and Technology, University of
Macau, Macau 999078, China

Ging Chan − Institute of Chinese Medical Sciences (ICMS),
State Key Laboratory of Quality Research in Chinese
Medicine and Department of Public Health and Medicinal
Administration, Faculty of Health Sciences (FHS), University
of Macau, Macau 999078, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.molpharmaceut.4c00946

Author Contributions
1Z.W. and N.W. contributed equally to this article.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Current research is financially supported by the Shenzhen-
Hong Kong-Macau Science and Technology Program
(Category C) of Shenzhen Science and Technology
Innovation Commission (SGDX20210823103802016) and
Industry-university-research cooperation project and Zhuhai-
Hong Kong-Macao cooperation project from Zhuhai Science
a n d T e c h n o l o g y I n n o v a t i o n B u r e a u
(ZH22017002210010PWC). We also thank the funding
provided by Macao Polytechnic University (RP/FCA-13/
2023).

■ ABBREVIATIONS
BCS: biopharmaceutics classification system
ML: machine learning
QSPR: quantitative structure−property relationships
IR: immediate-release
BE: bioequivalence

EMA: European Medicines Agency
FDA: U.S. Food and Drug Administration
CADD: computer-aided drug design
ECFPs: Extended-Connectivity Fingerprints
XGBoost: Extreme Gradient Boosting
LightGBM: Highly Efficient Gradient Boosting Decision
Tree
GCN: Graph convolutional networks
GNN: Graph Neural Network
RNN: recursive neural network
TPE: Tree-structured Parzen Estimator
AutoML: Automated Machine Learning
R2: coefficient of determination
MAE: Mean Absolute Error
RMSE: Root Mean Squared Error
ECS: Elastic Compute Service
CSS: Cascading Style Sheets
AJAX: Asynchronous Javascript And XML
TLS: Transport Layer Security

■ REFERENCES
(1) Amidon, G. L.; Lennernäs, H.; Shah, V. P.; Crison, J. R. A

Theoretical Basis for a Biopharmaceutic Drug Classification: The
Correlation of in Vitro Drug Product Dissolution and in Vivo
Bioavailability. Pharm. Res. 1995, 12 (3), 413−420.

(2) Cook, J. A.; Davit, B. M.; Polli, J. E. Impact of Biopharmaceutics
Classification System-Based Biowaivers. Mol. Pharmaceutics 2010, 7
(5), 1539−1544.

(3) Takagi, T.; Ramachandran, C.; Bermejo, M.; Yamashita, S.; Yu,
L. X.; Amidon, G. L. A Provisional Biopharmaceutical Classification of
the Top 200 Oral Drug Products in the United States, Great Britain,
Spain, and Japan. Mol. Pharmaceutics 2006, 3 (6), 631−643.

(4) Dahan, A.; Miller, J. M.; Amidon, G. L. Prediction of Solubility
and Permeability Class Membership: Provisional BCS Classification
of the World’s Top Oral Drugs. AAPS J. 2009, 11 (4), 740−746.

(5) Illamola, S. M.; Birnbaum, A. K.; Sherwin, C. M. Generic Drug
Products in Paediatrics: Where Are the Data? Br. J. Clin. Pharmacol.
2019, 85 (9), 1871−1873.

(6) Pham-The, H.; Garrigues, T.; Bermejo, M.; González-Álvarez, I.;
Monteagudo, M. C.; Cabrera-Pérez, M. Á. Provisional Classification
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